COMBINATORICA

Akadémiai Kiadó - Springer-Verlag

LARGE FACES IN 4-CRITICAL PLANAR GRAPHS WITH MINIMUM DEGREE 4

H. L. ABBOTT, D. R. HARE and B. ZHOU*

Received September 16, 1993 Revised February 7, 1995

We prove that the size of the largest face of a 4-critical planar graph with $\delta \geq 4$ is at most one half the number of its vertices. Let f(n) denote the maximum of the sizes of largest faces of all such graphs with n vertices (n sufficiently large). We present an infinite family of graphs that shows $\lim_{n \to \infty} \frac{f(n)}{n} = \frac{1}{2}$.

A graph G is said to be k-critical if it has chromatic number k, but every proper subgraph of G has a (k-1)-coloring. In 1985, G. Koester [5] gave an example of a 4-critical 4-regular planar graph. It is the graph shown in Figure 1. This graph provided a counterexample to the old conjecture of Gallai [3] that every 4-critical planar graph has a vertex of degree 3. Koester's discovery sparked interest in the class \mathcal{G} of 4-critical planar graphs with minimal degree $\delta \geq 4$. It is now known that there exist arbitrarily large 4-critical 4-regular planar graphs and that there exist graphs of order n in \mathcal{G} for all sufficiently large n. See [2], [6], and [7]. It has also been shown by Koester [7] that every graph in \mathcal{G} has a vertex of degree 4. For a different proof of this result see [1].

The aim of this paper is to investigate certain questions concerning the size of the largest face of graphs in \mathcal{G} . The odd wheel shows that there exist 4-critical planar graphs whose largest face contains all but one of the vertices. For $G \in \mathcal{G}$, however, the situation changes. Our main result is the following.

Theorem 1. Let $G = (V, E) \in \mathcal{G}$. Then no face of G has more than $\frac{1}{2}|V|$ vertices.

We shall also prove that Theorem 1 is, in a sense, best possible.

Theorem 2. There exist absolute constants c_1 and c_2 such that for all $n \ge c_1$ there exists a graph G in \mathcal{G} of order n whose largest face has size at least $\frac{1}{2}n - c_2$.

In the proof of Theorem 1 we shall need the following simple lemma.

^{*} All three authors gratefully acknowledge the support of the National Science and Engineering Research Council of Canada.

Mathematics Subject Classification (1991): Primary 05C15, Secondary 05C35

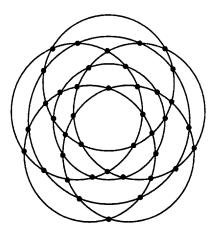


Fig. 1. Koester's graph

Lemma 3. For $n \ge 3$, the graph H_n shown in Figure 2 is not a proper subgraph of any 4-critical graph.

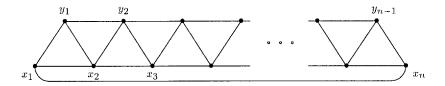


Fig. 2. The graph H_n

Proof. Suppose H_n is a proper subgraph of a 4-critical graph G for some $n \ge 3$. Then $n \not\equiv 1 \mod 3$ since, as it is easy to check, H_n is itself 4-critical if $n \equiv 1 \mod 3$. In any 3-coloring of $G - \{x_1x_n\}$, x_1 and x_n are assigned the same color.

Such a 3-coloring induces a 3-coloring of $H_n - \{x_1x_n\}$. However, it is straightforward to verify that in any 3-coloring of $H_n - \{x_1x_n\}$, x_1 and x_n must be assigned different colors when $n \equiv 0$, 2 mod 3.

Proof of Theorem 1. Consider a plane drawing of G in which the infinite face is a largest face. We denote the infinite face and its set of vertices by F. There should be no danger of confusion. Let $S = V \setminus F$. For each $v \in V$ and $X \subseteq V$, let $d_X(v)$ denote the number of edges from v to X.

Suppose that $d_S(v) \leq 1$ for some vertex v of F. Then, since $\delta = 4$, there is a vertex u of F such that $uv \in E$, but uv is not an edge of F. There are then two proper subgraphs G_1 and G_2 of G such that $V(G_1) \cap V(G_2) = \{u, v\}$, $E(G_1) \cap E(G_2) = \{uv\}$ and $G_1 \cup G_2 = G$. There is a 3-coloring of G_1 in which u is colored red and v is colored blue and a 3-coloring of G_2 with the same property. This yields a 3-coloring of G. If follows that $d_S(v) \geq 2$ for all vertices v of F.

If for all vertices v of S we have $d_F(v) \leq 2$ then

$$2|F| \le \sum_{v \in F} d_S(v) = \sum_{v \in S} d_F(v) \le 2|S|$$

so that $|F| \leq |S|$ and the theorem holds. We may therefore suppose that $d_F(v) \leq 2$ does not hold for all $v \in S$.

Let $w \in S$ be a fixed vertex satisfying $d_F(w) = m \ge 3$ and let the neighbors of w on F be $w_1, w_2, ..., w_m$, listed in some counterclockwise order (the choice of which vertex to label w_1 is arbitrary).

Consider any $x \in S$, $x \neq w$, such that $d_F(x) = k \geq 2$. The neighbors of x on F lie between w_i and w_{i+1} for some $i \in \{1, 2, ..., m\}$ (here $w_{m+1} = w_1$). Label the neighbors of x on F $x_1, x_2, ..., x_k$ in the counterclockwise order that has x_1 as the first vertex encountered after w_i when traversing along F in the counterclockwise direction. It may happen that $x_i = w_i$ or $x_k = w_{i+1}$.

Let G^x denote the subgraph of G induced by the set of vertices in the interior of or on the boundary of the region whose boundary consists of the edges xx_1 and xx_k and the part of the boundary of F joining x_1 to x_k in the counterclockwise sense. Let $F^x = (V(G^x) \cap F) \setminus \{x_1, x_k\}$ and let $S^x = V(G^x) \setminus (F^x \cup \{x, x_1, x_k\})$. See Figure 3.

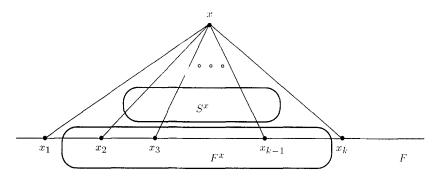


Fig. 3. The subgraph G^x

We define the depth of x as follows: depth(x) = 0 if there is no vertex z of S^x such that $d_F(z) \ge 2$ and for $l \ge 0$, depth(x) = l+1 where $l = \max\{depth(z) : z \in S^x, d_F(z) \ge 2\}$. Note that if $d_F(x) < 2$, then depth(x) is left undefined.

Define

$$g^{x} = \begin{cases} 0 & \text{if } d_{S^{x}}(x_{1}) = 0 \text{ and } d_{S^{x}}(x_{k}) = 0, \\ 1 & \text{if } d_{S^{x}}(x_{1}) \ge 1 \text{ or } d_{S^{x}}(x_{k}) \ge 1, \text{ but not both,} \\ 2 & \text{if } d_{S^{x}}(x_{1}) \ge 1 \text{ and } d_{S^{x}}(x_{k}) \ge 1. \end{cases}$$

The bulk of the remainder of the argument involves establishing

(1)
$$|F^x| = |S^x| \text{ implies } F^x = \emptyset = S^x$$

and

(2)
$$|F^x| \le |S^x| - g^x - 1 \text{ whenever } S^x \ne \emptyset.$$

We prove (1) and (2) by induction on depth(x). Let depth(x) = 0. By definition, $d_F(z) \le 1$ for all $z \in S^x$. For i = 1, 2, ..., k-1, let S_i^x be the set of those vertices of S^x lying in the interior of the region whose boundary consists of the edges xx_i and xx_{i+1} and the part of the boundary of F joining x_i to x_{i+1} in the counterclockwise sense. Let F_i^x consist of those vertices of F^x between x_i and x_{i+1} , not including x_i and x_{i+1} . See Figure 4.

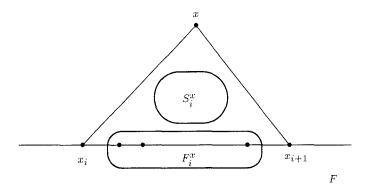


Fig. 4. The sets S_i^x and F_i^x

For i = 1, 2, ..., k-1, we have

$$2|F_i^x| + d_{S_i^x}(x_i) + d_{S_i^x}(x_{i+1}) \le \sum_{v \in F_i^x} d_S(v) + d_{S_i^x}(x_i) + d_{S_i^x}(x_{i+1})$$

= number of edges from
$$F_i^x \cup \{x_i, x_{i+1}\}$$
 to $S_i^x = \sum_{v \in S_i^x} d_F(v) \le |S_i^x|$.

This gives

(3)
$$2|F_i^x| \le |S_i^x| - d_{S_i^x}(x_i) - d_{S_i^x}(x_{i+1}).$$

Partition $\{1, 2, ..., k-1\}$ into three sets I_0, I_1, I_2 as follows:

$$\begin{split} I_0 &= \{i: d_{S_i^x}(x_i) = d_{S_i^x}(x_{i+1}) = 0\} \\ I_1 &= \{i: d_{S_i^x}(x_i) \geq 1, d_{S_i^x}(x_{i+1}) = 0\} \cup \{i: d_{S_i^x}(x_i) = 0, d_{S_i^x}(x_{i+1}) \geq 1\} \\ I_2 &= \{i: d_{S_i^x}(x_i) \geq 1, d_{S_i^x}(x_{i+1}) \geq 1\}. \end{split}$$

By (3),

$$(4) |F_i^x| \le |S_i^x| \text{ for all } i \in I_0.$$

If $i \in I_1 \cup I_2$, then $S_i^x \neq \emptyset$ and since $d_F(s) \leq 1$ for all $s \in S_i^x$ and $\delta = 4$, $|S_i^x| \geq 3$. Hence (3) gives

(5)
$$|F_i^x| < |S_i^x| - 2 \text{ for all } i \in I_1$$

and

(6)
$$|F_i^x| \le |S_i^x| - 3 \text{ for all } i \in I_2.$$

It now follows from inequalities (4), (5), and (6) that

$$|F^{x}| = k - 2 + \sum_{i=1}^{k-1} |F_{i}^{x}|$$

$$= k - 2 + \sum_{i \in I_{0}} |F_{i}^{x}| + \sum_{i \in I_{1}} |F_{i}^{x}| + \sum_{i \in I_{2}} |F_{i}^{x}|$$

$$\leq k - 2 + \sum_{i \in I_{0}} |S_{i}^{x}| + \sum_{i \in I_{1}} (|S_{i}^{x}| - 2) + \sum_{i \in I_{2}} (|S_{i}^{x}| - 3)$$

$$= k - 2 + \sum_{i=1}^{k-1} |S_{i}^{x}| - 2|I_{1}| - 3|I_{2}|.$$
(7)

Moreover since $\delta = 4$,

$$0|I_0| + 1|I_1| + 2|I_2| = \left| \left\{ i : d_{S_i^x}(x_i) \ge 1 \right\} \right| + \left| \left\{ i : d_{S_i^x}(x_{i+1}) \ge 1 \right\} \right|$$

$$(8) \qquad \ge k - 2 + g^x.$$

Combining (7) with (8) gives

(9)
$$|F^x| \le |S^x| - g^x - |I_1| - |I_2|.$$

If $|F^x| = |S^x|$, then by (9) $g^x = 0$ and $I_1 = \emptyset = I_2$. From (8) we have k = 2 and hence (3) implies $S^x = \emptyset$. Thus (1) is established in the case depth(x) = 0.

Consider now the case when $S^x \neq \emptyset$. If $g^x = 0$, then by the argument in the previous paragraph $|F^x| \neq |S^x|$, and if $g^x \geq 1$, then $|I_1| + |I_2| \geq 1$. Thus (9) establishes (2) in the case depth(x) = 0.

Suppose now that l>0 and that (1) and (2) have been established for all vertices x of $S\setminus\{w\}$ satisfying $d_F(x)\geq 2$ and depth(x)< l. Let $x\in S\setminus\{w\}$, $d_F(x)\geq 2$ and depth(x)=l. (If there is no such x, (1) and (2) are established). We adopt the notation used in the case depth(x)=0. Let Z^x be the set of all vertices z of S^x such that $d_F(z)\geq 2$ and such that for all z' of S^x satisfying $z'\neq z$ and $d_F(z')\geq 2$, G^z is not a subgraph of G^z . Let $Z^x=\{z_1,z_2,\ldots,z_h\}$. Let a_j be the "left most" vertex and b_j the "right most" vertex of G^{z_j} on F and suppose that the elements of Z^x are labelled so that a_{j+1} does not precede b_j in the counterclockwise order

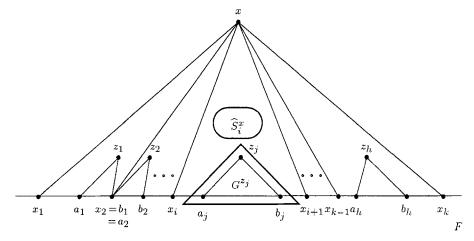


Fig. 5. The labelling of vertices of G^{z_j}

on F. It may happen that $a_{j+1} = b_j$. It may also happen that $x_i = a_j$ or b_j for some i, j. See Figure 5.

For i = 1, 2, ..., k-1, let

$$\widehat{S}_{i}^{x} = S_{i}^{x} \setminus \left(\bigcup_{j=1}^{h} V(G^{z_{j}})\right)$$

$$\widehat{F}_{i}^{x} = F_{i}^{x} \setminus \left(\bigcup_{j=1}^{h} V(G^{z_{j}})\right)$$

$$J_{i} = \{j : 1 \leq j \leq h, V(G^{z_{j}}) \cap S^{x} \subseteq S_{i}^{x}\}$$

and

$$L_i = \{ j \in J_i : V(G^{z_j}) \cap S^x = \{ z_i \} \}.$$

Observe that for $j \in L_i$, $V(G^{z_j}) \cap F = \{a_j, b_j\}$.

By the induction hypothesis, since $depth(z_j) < l$, for each $j \in J_i \setminus L_i$,

$$\left| \left(V(G^{z_j}) \cap F \right) \setminus \left\{ a_j, b_j \right\} \right| \le \left| \left(V(G^{z_j}) \cap S_i^x \right) \setminus \left\{ z_j \right\} \right| - g^{z_j} - 1.$$

We therefore get

(10)
$$\sum_{j \in J_i} |V(G^{z_j}) \cap F| \le \sum_{j \in J_i} |V(G^{z_j}) \cap S_i^x| - \sum_{j \in J_i} g^{z_j} + |L_i|.$$

For i=1, 2, ..., k-1, let $p_i=d_{\widehat{S}_i^x}(x_i)+d_{\widehat{S}_i^x}(x_{i+1})$, $q_i=\left|\{j\in J_i: a_j=b_{j-1}\}\right|$ and $r_i=\left|\{x_i,x_{i+1}\}\cap \{a_j,b_j: j\in J_i\}\right|$. Observe that $r_i=0, 1$ or 2 and that $|\widehat{S}_i^x|\geq p_i$.

Since $d_F(s) \leq 1$ for all $s \in \widehat{S}_i^x$, the number of edges from F to \widehat{S}_i^x is at most $|\widehat{S}_i^x|$. There are at least $2|\widehat{F}_i^x|$ edges from \widehat{F}_i^x to \widehat{S}_i^x . There are p_i edges from $\{x_i, x_{i+1}\}$ to \widehat{S}_i^x . For each $j \in J_i$ there are at least $2 - g^{z_j}$ edges from $\{a_j, b_j\}$ to vertices not in $G^{z_j} \cup F$ and thus at least $\sum_{j \in J_i} (2 - g^{z_j}) - 2q_i - r_i$ of the edges of this sort from F to \widehat{S}_i^x . It follows that

$$2|\widehat{F}_{i}^{x}| + p_{i} + \sum_{i \in J_{i}} (2 - g^{z_{j}}) - 2q_{i} - r_{i} \leq |\widehat{S}_{i}^{x}|.$$

This implies

(11)
$$|\widehat{F}_i^x| \le \frac{1}{2}|\widehat{S}_i^x| - |J_i| + \frac{1}{2} \sum_{i \in J_i} g^{z_i} + \frac{r_i}{2} - \frac{p_i}{2} + q_i.$$

Using (10) and (11) we have

$$|F_{i}^{x}| = |\widehat{F}_{i}^{x}| + \left| \bigcup_{j \in J_{i}} (V(G^{z_{j}}) \cap F) \right| - r_{i}$$

$$= |\widehat{F}_{i}^{x}| + \sum_{j \in J_{i}} |V(G^{z_{j}}) \cap F| - q_{i} - r_{i}$$

$$\leq |\widehat{F}_{i}^{x}| + \sum_{j \in J_{i}} |V(G^{z_{j}}) \cap S_{i}^{x}| - \sum_{j \in J_{i}} g^{z_{j}} + |L_{i}| - q_{i} - r_{i}$$

$$\leq \frac{1}{2} |\widehat{S}_{i}^{x}| + \sum_{j \in J_{i}} |V(G^{z_{j}}) \cap S_{i}^{x}| - \frac{1}{2} \sum_{j \in J_{i}} g^{z_{j}} - |J_{i} \setminus L_{i}| - \frac{r_{i}}{2} - \frac{p_{i}}{2}$$

$$= |S_{i}^{x}| - \frac{1}{2} \left\{ |\widehat{S}_{i}^{x}| + \sum_{j \in J_{i} \setminus L_{i}} (g^{z_{j}} + 2) + r_{i} + p_{i} \right\}.$$

$$(12)$$

At the last step, in rewriting the sum, we use the fact that $g^{z_j} = 0$ when $j \in L_i$. It follows from (12) that

$$|F_i^x| \le |S_i^x|$$
 for all $i \in I_0$.

That is, (4) holds when depth(x) = l.

Next we show that (5) holds when depth(x) = l.

If $i \in I_1$, then $r_i + p_i \ge 1$ and hence from (12) we have $|F_i^x| \le |S_i^x| - 1$. Suppose for some $i \in I_1$, $|F_i^x| = |S_i^x| - 1$. From (12) it then follows that

$$|\widehat{S}_i^x| + \sum_{j \in J_i \setminus L_i} (g^{z_j} + 2) + r_i + p_i \le 2.$$

This is possible only if the sum on the left is empty; that is, $J_i = L_i$. We then get

$$|\widehat{S}_i^x| + r_i + p_i \le 2.$$

If $p_i > 0$, then $|\widehat{S}_i^x| > 0$ and thus $p_i = |\widehat{S}_i^x| = 1$ and $r_i = 0$. Thus $F_i^x = \emptyset$ and $S_i^x = \widehat{S}_i^x = \{s\}$ for some $s \in S$. But this implies $d(s) \le 2$. Thus $p_i = 0$. We must then have $r_i = 1$ (since $r_i = 2$ would imply $i \in I_2$) and $|\widehat{S}_i^x| \le 1$.

If $|\widehat{S}_i^x| = 0$, then since $J_i = L_i$, $d_S(v) = 2$ for all $v \in F_i^x$. Moreover we have $S_i^x = \{z_j : j \in L_i\}$ and thus $d_F(s) = 2$ for all $s \in S_i^x$. Counting the edges between S_i^x and F_i^x gives the contradiction $2|S_i^x| - r_i = 2|F_i^x|$. Therefore $\widehat{S}_i^x = \{s\}$ for some $s \in S$.

It follows that there is a chain from one of x_i or x_{i+1} to s containing all of the vertices of $S_i^x \cup F_i^x$ and whose interior vertices are alternately from S_i^x and F_i^x . Without loss of generality, suppose the chain starts at x_i . Relabel the vertices of S_i^x , s_1 , s_2 , ..., $s_t = s$, as shown in Figure 6.

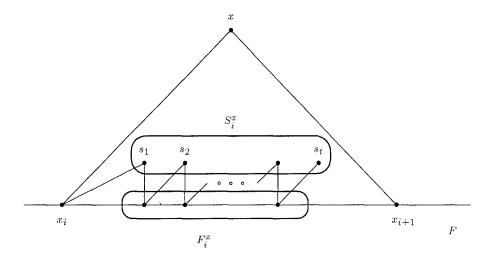


Fig. 6. The case $i \in I_1$ and $|F_i^x| = |S_i^x| - 1$

Suppose that for a pair of non-consecutive integers a and b in $\{1, 2, ..., t\}$, a < b, $s_a s_b$ is an edge of G and choose such a pair with b-a minimal. The condition b=4 then ensures that $s_a s_{a+1}, s_{a+1} s_{a+2}, ..., s_{b-1} s_b$ are edges of G. This implies that H_{b-a+1} is a proper subgraph of G, contrary to the lemma. It follows that no such pair a, b exists. Equivalently, if $s_a s_b \in E$ for some $a, b \in \{1, 2, ..., t\}$, a < b, then b=a+1.

Since s is not adjacent to x_{i+1} and by the previous paragraph s is adjacent to at most one vertex from S_i^x , $d(s) \leq 3$. This contradiction establishes (5) in the case depth(x) = l.

We now show (6) holds when depth(x) = l. If $i \in I_2$, then $r_i + p_i \ge 2$ and thus (12) implies $|F_i^x| \le |S_i^x| - 1$. Suppose that for some $i \in I_2$, $|F_i^x| = |S_i^x| - 1$. Then (12) implies that $r_i + p_i = 2$, $\widehat{S}_i^x = \emptyset$ and $L_i = J_i$. Thus $p_i = 0$ and G^x must contain the subgraph shown in Figure 7.

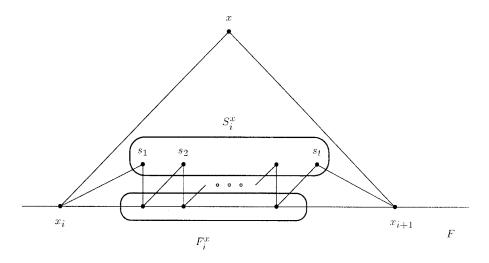


Fig. 7. The case $i \in I_2$ and $|F_i^x| = |S_i^x| - 1$

As in the case when $i \in I_1$, if $s_a s_b \in E$ for some $a, b \in \{1, 2, ..., t\}$, a < b, then b = a + 1. The condition $\delta = 4$ implies that xs_1, s_1s_2, xs_t and $s_{t-1}s_t$ are edges of G. Let j be the least integer such that j > 1 and $xs_j \in E$. It is straightforward to check that if $j \equiv 0 \mod 3$ there is no 3-coloring of G^x . In attempting to effect such a 3-coloring one must assign different colors to x, x_i and s_1 and the structure of G^x is such that the colors assigned to $s_2, s_3, ..., s_{j-1}$ and their neighbors on F_i^x are forced and three of the neighbors of s_j have different colors. One also finds that if $j \equiv 1 \mod 3$, there is no 3-coloring of $G - \{xs_1\}$ in which x and s_1 have the same color, and if $j \equiv 2 \mod 3$, there is no 3-coloring of $G - \{xs_i\}$ in which x and x_i have the same color. This contradiction thus establishes $|F_i^x| \leq |S_i^x| - 2$ for all $i \in I_2$. The argument used in this paragraph will be used, almost verbatim, at a later stage of the proof. We refer to it as (A), so as to avoid having to repeat it.

Suppose that for some $i \in I_2$, $|F_i^x| = |S_i^x| - 2$. Then, by (12),

$$|\widehat{S}_i^x| + \sum_{j \in J_i \setminus L_i} (g^{z_j} + 2) + r_i + p_i \le 4.$$

Since $r_i + p_i \ge 2$, we must have $J_i = L_i$. Otherwise, the sum on the left is nonempty and thus at least 3, since $g^{z_j} \ne 0$ for $j \notin L_i$. It follows that

$$|\widehat{S}_i^x| + r_i + p_i \le 4.$$

If $r_i=0$, then $p_i\geq 2$ and hence $|\widehat{S}_i^x|\geq p_i\geq 2$. It follows that $|\widehat{S}_i^x|=p_i=2$. If $L_i\neq\emptyset$, then since $r_i=0$ at least 2 vertices from F_i^x have neighbors in \widehat{S}_i^x and since $d_F(s)\leq 1$ for all $s\in\widehat{S}_i^x$, we must have $|\widehat{S}_i^x|>2$, a contradiction. Thus $L_i=\emptyset$. But then $d(s)\leq 3$ for every $s\in\widehat{S}_i^x$, another contradiction. Hence $r_i\geq 1$.

Suppose $r_i = 1$. Then $p_i + |\widehat{S}_i^x| \le 3$ and $|\widehat{S}_i^x| \ge p_i \ge 1$, so that $p_i = 1$ and $|\widehat{S}_i^x|$ is either 1 or 2. If $|\widehat{S}_i^x| = 1$, then since $p_i = 1$ and $J_i = L_i$, $\{z_j : j \in L_i\}$ is the set of neighbors in S of the vertices in F_i^x . Hence $d_{S_i^x}(v) = 2$ for all $v \in F_i^x$ and $d_F(s) = 2$ for all $s \in S_i^x \setminus \widehat{S}_i^x$. Counting the edges between S_i^x and F_i^x gives the contradiction $2(|S_i^x| - 1) - r_i = 2|F_i^x|$. Therefore $|\widehat{S}_i^x| = 2$.

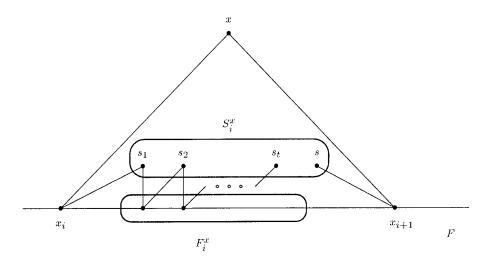


Fig. 8. The case $i \in I_2$, $|F_i^x| = |S_i^x| - 2$ and $r_i = 1$

Thus G^x must contain the subgraph shown in Figure 8. Here x_1s_1 is the edge counted by r_i , s_t and s are the vertices of \widehat{S}_i^x , $x_{i+1}s$ is the edge counted by p_i and $s_1, s_2, \ldots, s_{t-1}$ are the vertices in Z^x .

If xs_t is an edge of G, then $d(s) \leq 3$. Hence s_t must be adjacent to at least two vertices from $s_1, s_2, \ldots, s_{t-1}$. This implies that G must contain one of the graphs described in the lemma, a contradiction. Thus $r_i = 2$.

This gives $p_i + |\widehat{S}_i^x| \le 2$ and since $|\widehat{S}_i^x| \ge p_i$, we are left with four possibilities: $p_i = 0$ and $|\widehat{S}_i^x|$ is either 0,1 or 2, or $p_i = 1$ and $|\widehat{S}_i^x| = 1$.

If $p_i = |\hat{S}_i^x| = 0$, then arguing as before we count the edges between S_i^x and F_i^x to obtain the contradiction $2|S_i^x| - r_i = 2|F_i^x|$.

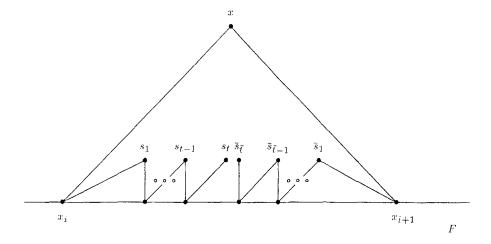


Fig. 9. The case $i \in I_2$, $|F_i^x| = |S_i^x| - 2$, $r_i = 2$ and $p_i = 0$

Suppose $p_i = 0$ and $|\widehat{S}_i^x| = 2$. G^x must then contain the subgraph shown in Figure 9. Here $x_i s_1$ and $x_{i+1} \bar{s}_1$ are the edges counted by $r_i = 2$, s_t and $\bar{s}_{\bar{t}}$ are the vertices of \widehat{S}_i^x and s_1 , s_2 , ..., s_{t-1} , \bar{s}_1 , \bar{s}_2 , ..., $\bar{s}_{\bar{t}-1}$ are the vertices of Z^x . The vertex s_t cannot have more than one neighbor among s_1 , s_2 , ..., s_{t-1} and if it has exactly one such neighbor, it must be s_{t-1} . Otherwise, G would contain one of the forbidden subgraphs described in the lemma. Also, since G is planar and $\delta = 4$, s_t cannot be adjacent to any of \bar{s}_1 , \bar{s}_2 , ..., $\bar{s}_{\bar{t}-1}$. Thus s_t is adjacent to x, s_{t-1} and $\bar{s}_{\bar{t}}$. The condition $\delta = 4$ then implies that xs_1 , s_1s_2 are edges of G. It is now easy to see that argument (A) may be used to get a contradiction.

Therefore we must have $p_i \leq 1$ and $|\widehat{S}_i^x| = 1$. These two cases are similar and so we only present the argument for $p_i = |\widehat{S}_i^x| = 1$. In this case, G^x must contain the subgraph shown in Figure 10. Here $x_i s_1$ and $x_{i+1} s_{t-1}$ are the edges counted by r_i , $x_{i+1} s_t$ is the edge counted by p_i and s_t is the only vertex of \widehat{S}_i^x . The vertex s_t must have at least two neighbors among $s_1, s_2, \ldots, s_{t-1}$ and one sees that G must contain one of the subgraphs described in the lemma. Thus (6) is established when depth(x) = l.

Continuing as in the proof of the case when depth(x) = 0, it follows that (9) is established when depth(x) = l. If $|F^x| = |S^x|$, then as in the case when depth(x) = 0, k = 2 and $S^x = S_1^x$, $\widehat{S}_1^x = \emptyset$, $r_i = 0 = p_i$ and $L_i = J_i$. But $r_i = 0$ implies that if $L_i \neq \emptyset$, then at least 2 vertices from F_1^x have neighbors in \widehat{S}_1^x , a contradiction. Thus $L_i = \emptyset$ and (1) is established when depth(x) = l. Finishing off as in the case depth(x) = 0, (2) is established when depth(x) = l.

The proof of the theorem may now be easily completed. For i = 1, 2, ..., m let G_i^w be the subgraph of G induced by the vertices in the interior of or on the

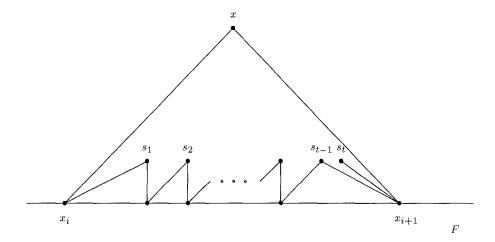


Fig. 10. The case $i \in I_2$, $|F_i^x| = |S_i^x| - 2$, $r_i = 2$ and $p_i = 1$

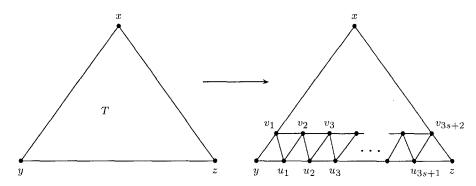


Fig. 11. The transformation of T

boundary of the region whose boundary consists of the edges ww_i , ww_{i+1} and the part of the boundary of F containing the remaining neighbors of w. Define g_i^w analogously. It is understood that $w_{m+1} = w_1$. Then (1) and (2) hold for G_i^w . Thus

$$|V(G_i^w) \cap F| \le |V(G_i^w) \cap S| + 1 - g_i^w.$$

Since $\delta = 4$, $\sum_{i=1}^{m} g_i^w \ge m$ and hence

$$m + (m-1)|F| = \sum_{i=1}^{m} |V(G_i^w) \cap F| \le m + \sum_{i=1}^{m} |V(G_i^w) \cap S| - \sum_{i=1}^{m} g_i^w \le (m-1)|S| + 1.$$

This gives $|F| \le |S| - 1$ and Theorem 1 is proved.

Proof of Theorem 2. Let $G \in \mathcal{G}$ be a graph of order h and suppose that G has a triangular face T. There are such graphs in \mathcal{G} for any $h \geq 81$ (see [2] or [7]). Let T have vertices x, y, z. Delete the edges xy, xz, yz and add new vertices $v_1, v_2, \ldots, v_{3s+2}, u_1, u_2, \ldots, u_{3s+1}$ and new edges $xv_1, xv_{3s+2}, yv_1, yu_1, zv_{3s+2}, zu_{3s+1}, v_iv_{i+1}, v_iu_i, u_iv_{i+1}, i=1, 2, \ldots, 3s+1, u_iu_{i+1}, i=1, 2, \ldots, 3s$. See Figure 11.

Denote the resulting graph by G_s . It is straightforward to check that $G_s \in \mathcal{G}$ for all $s \ge 1$. G_s has order n = h + 6s + 3 and the largest face of G_s has size at least $3s + 3 = \frac{n}{2} - \frac{h - 3}{2}$.

Acknowledgement. The authors wish to thank the referee for giving the original manuscript a very careful reading and for pointing out a number of obscurities.

References

- [1] H. L. Abbott, M. Katchalski, and B. Zhou: Proof of a conjecture of Dirac concerning 4-critical planar graphs. *Discrete Math.*, **132** (1994), 367-371.
- [2] H. L. ABBOTT and B. Zhou: The edge density of 4-critical planar graphs. Combinatorica, 11 (1991), 185–189.
- [3] T. Gallat: Critical graphs. In Theory of Graphs and its Applications (Proc. Symp. Smolenice, 1963), 43-45, Publ. House Szech. Acad. Sci., 1964.
- [4] B. Grünbaum: The edge density of 4-critical planar graphs. *Combinatorica*, 8 (1988), 137–139.
- [5] G. KOESTER: Note to a problem of T. Gallai and G. A. Dirac. Combinatorica, 5 (1985), 227–228.
- [6] G. Koester: 4-critical 4-valent planar graphs constructed with crowns. *Math. Scand.*, 67 (1990), 17–22.
- [7] G. KOESTER: On 4-critical planar graphs with high edge density. Discrete Math., 98 (1991), 147-151.

H. L. Abbott

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1 habbott@vega.math.ualberta.ca

B. Zhou

Department of Mathematics, Trent University, Peterborough, Ontario, Canada, K9J 7B8.

D. R. Hare

Department of Mathematics and Statistics, Okanagan University College, 3333 College Way, Kelowna, B.C. Canada VIV 1V7 dhare@okanagan.bc.ca